sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(2205, base_ring=CyclotomicField(42))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([28,0,11]))
sage: chi.galois_orbit()
pari: [g,chi] = znchar(Mod(61,2205))
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(2205\) | |
Conductor: | \(441\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 441.bl | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | 42.0.61849948934846323740928964041516234392013738413062346563659921389600804608476019954673203847.2 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{2205}(61,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) |
\(\chi_{2205}(346,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) |
\(\chi_{2205}(376,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) |
\(\chi_{2205}(661,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) |
\(\chi_{2205}(691,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) |
\(\chi_{2205}(976,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) |
\(\chi_{2205}(1006,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) |
\(\chi_{2205}(1291,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) |
\(\chi_{2205}(1321,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) |
\(\chi_{2205}(1606,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) |
\(\chi_{2205}(1921,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) |
\(\chi_{2205}(1951,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) |