# Properties

 Label 2205.907 Modulus $2205$ Conductor $2205$ Order $84$ Real no Primitive yes Minimal yes Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(2205, base_ring=CyclotomicField(84))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([56,21,32]))

pari: [g,chi] = znchar(Mod(907,2205))

## Basic properties

 Modulus: $$2205$$ Conductor: $$2205$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$84$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 2205.ep

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $\Q(\zeta_{84})$ Fixed field: Number field defined by a degree 84 polynomial

## Values on generators

$$(1226,442,1081)$$ → $$(e\left(\frac{2}{3}\right),i,e\left(\frac{8}{21}\right))$$

## Values

 $$-1$$ $$1$$ $$2$$ $$4$$ $$8$$ $$11$$ $$13$$ $$16$$ $$17$$ $$19$$ $$22$$ $$23$$ $$-1$$ $$1$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{19}{21}\right)$$ $$e\left(\frac{55}{84}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{65}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{61}{84}\right)$$ $$e\left(\frac{47}{84}\right)$$
 value at e.g. 2