sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2205, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([70,21,52]))
pari:[g,chi] = znchar(Mod(1472,2205))
| Modulus: | \(2205\) | |
| Conductor: | \(2205\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2205}(23,\cdot)\)
\(\chi_{2205}(137,\cdot)\)
\(\chi_{2205}(212,\cdot)\)
\(\chi_{2205}(338,\cdot)\)
\(\chi_{2205}(452,\cdot)\)
\(\chi_{2205}(527,\cdot)\)
\(\chi_{2205}(578,\cdot)\)
\(\chi_{2205}(653,\cdot)\)
\(\chi_{2205}(767,\cdot)\)
\(\chi_{2205}(842,\cdot)\)
\(\chi_{2205}(893,\cdot)\)
\(\chi_{2205}(968,\cdot)\)
\(\chi_{2205}(1082,\cdot)\)
\(\chi_{2205}(1208,\cdot)\)
\(\chi_{2205}(1283,\cdot)\)
\(\chi_{2205}(1397,\cdot)\)
\(\chi_{2205}(1472,\cdot)\)
\(\chi_{2205}(1523,\cdot)\)
\(\chi_{2205}(1712,\cdot)\)
\(\chi_{2205}(1787,\cdot)\)
\(\chi_{2205}(1838,\cdot)\)
\(\chi_{2205}(1913,\cdot)\)
\(\chi_{2205}(2102,\cdot)\)
\(\chi_{2205}(2153,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,442,1081)\) → \((e\left(\frac{5}{6}\right),i,e\left(\frac{13}{21}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
| \( \chi_{ 2205 }(1472, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{19}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{37}{84}\right)\) |
sage:chi.jacobi_sum(n)