Properties

Label 2205.11
Modulus $2205$
Conductor $441$
Order $42$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(2205, base_ring=CyclotomicField(42))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([7,0,40]))
 
pari: [g,chi] = znchar(Mod(11,2205))
 

Basic properties

Modulus: \(2205\)
Conductor: \(441\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{441}(11,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2205.dx

\(\chi_{2205}(11,\cdot)\) \(\chi_{2205}(86,\cdot)\) \(\chi_{2205}(326,\cdot)\) \(\chi_{2205}(401,\cdot)\) \(\chi_{2205}(641,\cdot)\) \(\chi_{2205}(956,\cdot)\) \(\chi_{2205}(1031,\cdot)\) \(\chi_{2205}(1271,\cdot)\) \(\chi_{2205}(1346,\cdot)\) \(\chi_{2205}(1661,\cdot)\) \(\chi_{2205}(1901,\cdot)\) \(\chi_{2205}(1976,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 42.0.19323691188644130003058806336970857802190577987052478847817749725579565668391007948695756687627.1

Values on generators

\((1226,442,1081)\) → \((e\left(\frac{1}{6}\right),1,e\left(\frac{20}{21}\right))\)

Values

\(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\(-1\)\(1\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{11}{42}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{13}{42}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{1}{42}\right)\)
value at e.g. 2