Properties

Label 216000.89
Modulus $216000$
Conductor $36000$
Order $600$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(216000, base_ring=CyclotomicField(600)) M = H._module chi = DirichletCharacter(H, M([0,75,100,396]))
 
Copy content pari:[g,chi] = znchar(Mod(89,216000))
 

Basic properties

Modulus: \(216000\)
Conductor: \(36000\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(600\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{36000}(7589,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 216000.vj

\(\chi_{216000}(89,\cdot)\) \(\chi_{216000}(1529,\cdot)\) \(\chi_{216000}(3689,\cdot)\) \(\chi_{216000}(4409,\cdot)\) \(\chi_{216000}(6569,\cdot)\) \(\chi_{216000}(8009,\cdot)\) \(\chi_{216000}(8729,\cdot)\) \(\chi_{216000}(10169,\cdot)\) \(\chi_{216000}(10889,\cdot)\) \(\chi_{216000}(12329,\cdot)\) \(\chi_{216000}(14489,\cdot)\) \(\chi_{216000}(15209,\cdot)\) \(\chi_{216000}(17369,\cdot)\) \(\chi_{216000}(18809,\cdot)\) \(\chi_{216000}(19529,\cdot)\) \(\chi_{216000}(20969,\cdot)\) \(\chi_{216000}(21689,\cdot)\) \(\chi_{216000}(23129,\cdot)\) \(\chi_{216000}(25289,\cdot)\) \(\chi_{216000}(26009,\cdot)\) \(\chi_{216000}(28169,\cdot)\) \(\chi_{216000}(29609,\cdot)\) \(\chi_{216000}(30329,\cdot)\) \(\chi_{216000}(31769,\cdot)\) \(\chi_{216000}(32489,\cdot)\) \(\chi_{216000}(33929,\cdot)\) \(\chi_{216000}(36089,\cdot)\) \(\chi_{216000}(36809,\cdot)\) \(\chi_{216000}(38969,\cdot)\) \(\chi_{216000}(40409,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{600})$
Fixed field: Number field defined by a degree 600 polynomial (not computed)

Values on generators

\((114751,202501,136001,29377)\) → \((1,e\left(\frac{1}{8}\right),e\left(\frac{1}{6}\right),e\left(\frac{33}{50}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 216000 }(89, a) \) \(-1\)\(1\)\(e\left(\frac{1}{60}\right)\)\(e\left(\frac{571}{600}\right)\)\(e\left(\frac{569}{600}\right)\)\(e\left(\frac{9}{50}\right)\)\(e\left(\frac{151}{200}\right)\)\(e\left(\frac{13}{300}\right)\)\(e\left(\frac{277}{600}\right)\)\(e\left(\frac{1}{75}\right)\)\(e\left(\frac{53}{200}\right)\)\(e\left(\frac{187}{300}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 216000 }(89,a) \;\) at \(\;a = \) e.g. 2