sage: H = DirichletGroup(216000)
pari: g = idealstar(,216000,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 57600 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{4}\times C_{3600}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{216000}(114751,\cdot)$, $\chi_{216000}(202501,\cdot)$, $\chi_{216000}(136001,\cdot)$, $\chi_{216000}(29377,\cdot)$ |
First 32 of 57600 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{216000}(1,\cdot)\) | 216000.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{216000}(7,\cdot)\) | 216000.th | 360 | no | \(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{281}{360}\right)\) | \(e\left(\frac{229}{360}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{101}{120}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{167}{360}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{73}{120}\right)\) | \(e\left(\frac{47}{180}\right)\) |
\(\chi_{216000}(11,\cdot)\) | 216000.yp | 3600 | yes | \(1\) | \(1\) | \(e\left(\frac{281}{360}\right)\) | \(e\left(\frac{761}{3600}\right)\) | \(e\left(\frac{379}{3600}\right)\) | \(e\left(\frac{19}{300}\right)\) | \(e\left(\frac{41}{1200}\right)\) | \(e\left(\frac{683}{1800}\right)\) | \(e\left(\frac{1007}{3600}\right)\) | \(e\left(\frac{208}{225}\right)\) | \(e\left(\frac{223}{1200}\right)\) | \(e\left(\frac{167}{1800}\right)\) |
\(\chi_{216000}(13,\cdot)\) | 216000.yv | 3600 | yes | \(-1\) | \(1\) | \(e\left(\frac{229}{360}\right)\) | \(e\left(\frac{379}{3600}\right)\) | \(e\left(\frac{2981}{3600}\right)\) | \(e\left(\frac{29}{75}\right)\) | \(e\left(\frac{1099}{1200}\right)\) | \(e\left(\frac{187}{1800}\right)\) | \(e\left(\frac{3373}{3600}\right)\) | \(e\left(\frac{49}{450}\right)\) | \(e\left(\frac{497}{1200}\right)\) | \(e\left(\frac{1513}{1800}\right)\) |
\(\chi_{216000}(17,\cdot)\) | 216000.sl | 300 | no | \(1\) | \(1\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{19}{300}\right)\) | \(e\left(\frac{29}{75}\right)\) | \(e\left(\frac{79}{100}\right)\) | \(e\left(\frac{39}{100}\right)\) | \(e\left(\frac{89}{300}\right)\) | \(e\left(\frac{103}{300}\right)\) | \(e\left(\frac{53}{75}\right)\) | \(e\left(\frac{23}{25}\right)\) | \(e\left(\frac{59}{75}\right)\) |
\(\chi_{216000}(19,\cdot)\) | 216000.xk | 1200 | no | \(-1\) | \(1\) | \(e\left(\frac{101}{120}\right)\) | \(e\left(\frac{41}{1200}\right)\) | \(e\left(\frac{1099}{1200}\right)\) | \(e\left(\frac{39}{100}\right)\) | \(e\left(\frac{321}{400}\right)\) | \(e\left(\frac{323}{600}\right)\) | \(e\left(\frac{767}{1200}\right)\) | \(e\left(\frac{73}{75}\right)\) | \(e\left(\frac{63}{400}\right)\) | \(e\left(\frac{227}{600}\right)\) |
\(\chi_{216000}(23,\cdot)\) | 216000.yd | 1800 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{683}{1800}\right)\) | \(e\left(\frac{187}{1800}\right)\) | \(e\left(\frac{89}{300}\right)\) | \(e\left(\frac{323}{600}\right)\) | \(e\left(\frac{37}{450}\right)\) | \(e\left(\frac{821}{1800}\right)\) | \(e\left(\frac{271}{450}\right)\) | \(e\left(\frac{319}{600}\right)\) | \(e\left(\frac{251}{900}\right)\) |
\(\chi_{216000}(29,\cdot)\) | 216000.yn | 3600 | yes | \(-1\) | \(1\) | \(e\left(\frac{167}{360}\right)\) | \(e\left(\frac{1007}{3600}\right)\) | \(e\left(\frac{3373}{3600}\right)\) | \(e\left(\frac{103}{300}\right)\) | \(e\left(\frac{767}{1200}\right)\) | \(e\left(\frac{821}{1800}\right)\) | \(e\left(\frac{209}{3600}\right)\) | \(e\left(\frac{167}{450}\right)\) | \(e\left(\frac{601}{1200}\right)\) | \(e\left(\frac{1529}{1800}\right)\) |
\(\chi_{216000}(31,\cdot)\) | 216000.uj | 450 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{208}{225}\right)\) | \(e\left(\frac{49}{450}\right)\) | \(e\left(\frac{53}{75}\right)\) | \(e\left(\frac{73}{75}\right)\) | \(e\left(\frac{271}{450}\right)\) | \(e\left(\frac{167}{450}\right)\) | \(e\left(\frac{343}{450}\right)\) | \(e\left(\frac{13}{150}\right)\) | \(e\left(\frac{2}{225}\right)\) |
\(\chi_{216000}(37,\cdot)\) | 216000.xf | 1200 | no | \(-1\) | \(1\) | \(e\left(\frac{73}{120}\right)\) | \(e\left(\frac{223}{1200}\right)\) | \(e\left(\frac{497}{1200}\right)\) | \(e\left(\frac{23}{25}\right)\) | \(e\left(\frac{63}{400}\right)\) | \(e\left(\frac{319}{600}\right)\) | \(e\left(\frac{601}{1200}\right)\) | \(e\left(\frac{13}{150}\right)\) | \(e\left(\frac{189}{400}\right)\) | \(e\left(\frac{181}{600}\right)\) |
\(\chi_{216000}(41,\cdot)\) | 216000.ye | 1800 | no | \(-1\) | \(1\) | \(e\left(\frac{47}{180}\right)\) | \(e\left(\frac{167}{1800}\right)\) | \(e\left(\frac{1513}{1800}\right)\) | \(e\left(\frac{59}{75}\right)\) | \(e\left(\frac{227}{600}\right)\) | \(e\left(\frac{251}{900}\right)\) | \(e\left(\frac{1529}{1800}\right)\) | \(e\left(\frac{2}{225}\right)\) | \(e\left(\frac{181}{600}\right)\) | \(e\left(\frac{599}{900}\right)\) |
\(\chi_{216000}(43,\cdot)\) | 216000.vp | 720 | no | \(1\) | \(1\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{469}{720}\right)\) | \(e\left(\frac{11}{720}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{229}{240}\right)\) | \(e\left(\frac{277}{360}\right)\) | \(e\left(\frac{43}{720}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{47}{240}\right)\) | \(e\left(\frac{343}{360}\right)\) |
\(\chi_{216000}(47,\cdot)\) | 216000.we | 900 | no | \(-1\) | \(1\) | \(e\left(\frac{121}{180}\right)\) | \(e\left(\frac{23}{900}\right)\) | \(e\left(\frac{43}{225}\right)\) | \(e\left(\frac{193}{300}\right)\) | \(e\left(\frac{263}{300}\right)\) | \(e\left(\frac{313}{900}\right)\) | \(e\left(\frac{701}{900}\right)\) | \(e\left(\frac{377}{450}\right)\) | \(e\left(\frac{16}{75}\right)\) | \(e\left(\frac{178}{225}\right)\) |
\(\chi_{216000}(49,\cdot)\) | 216000.qb | 180 | no | \(1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{101}{180}\right)\) | \(e\left(\frac{49}{180}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{167}{180}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{47}{90}\right)\) |
\(\chi_{216000}(53,\cdot)\) | 216000.tu | 400 | no | \(1\) | \(1\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{393}{400}\right)\) | \(e\left(\frac{327}{400}\right)\) | \(e\left(\frac{4}{25}\right)\) | \(e\left(\frac{99}{400}\right)\) | \(e\left(\frac{129}{200}\right)\) | \(e\left(\frac{191}{400}\right)\) | \(e\left(\frac{33}{50}\right)\) | \(e\left(\frac{97}{400}\right)\) | \(e\left(\frac{71}{200}\right)\) |
\(\chi_{216000}(59,\cdot)\) | 216000.yo | 3600 | yes | \(1\) | \(1\) | \(e\left(\frac{169}{360}\right)\) | \(e\left(\frac{949}{3600}\right)\) | \(e\left(\frac{1511}{3600}\right)\) | \(e\left(\frac{221}{300}\right)\) | \(e\left(\frac{469}{1200}\right)\) | \(e\left(\frac{1747}{1800}\right)\) | \(e\left(\frac{163}{3600}\right)\) | \(e\left(\frac{197}{225}\right)\) | \(e\left(\frac{107}{1200}\right)\) | \(e\left(\frac{1003}{1800}\right)\) |
\(\chi_{216000}(61,\cdot)\) | 216000.ys | 3600 | yes | \(1\) | \(1\) | \(e\left(\frac{251}{360}\right)\) | \(e\left(\frac{191}{3600}\right)\) | \(e\left(\frac{2749}{3600}\right)\) | \(e\left(\frac{139}{300}\right)\) | \(e\left(\frac{71}{1200}\right)\) | \(e\left(\frac{1373}{1800}\right)\) | \(e\left(\frac{2417}{3600}\right)\) | \(e\left(\frac{71}{450}\right)\) | \(e\left(\frac{313}{1200}\right)\) | \(e\left(\frac{677}{1800}\right)\) |
\(\chi_{216000}(67,\cdot)\) | 216000.yu | 3600 | yes | \(1\) | \(1\) | \(e\left(\frac{193}{360}\right)\) | \(e\left(\frac{343}{3600}\right)\) | \(e\left(\frac{1577}{3600}\right)\) | \(e\left(\frac{61}{150}\right)\) | \(e\left(\frac{583}{1200}\right)\) | \(e\left(\frac{79}{1800}\right)\) | \(e\left(\frac{2041}{3600}\right)\) | \(e\left(\frac{29}{225}\right)\) | \(e\left(\frac{149}{1200}\right)\) | \(e\left(\frac{1621}{1800}\right)\) |
\(\chi_{216000}(71,\cdot)\) | 216000.vg | 600 | no | \(1\) | \(1\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{107}{600}\right)\) | \(e\left(\frac{73}{600}\right)\) | \(e\left(\frac{14}{25}\right)\) | \(e\left(\frac{167}{200}\right)\) | \(e\left(\frac{221}{300}\right)\) | \(e\left(\frac{209}{600}\right)\) | \(e\left(\frac{109}{150}\right)\) | \(e\left(\frac{101}{200}\right)\) | \(e\left(\frac{179}{300}\right)\) |
\(\chi_{216000}(73,\cdot)\) | 216000.uz | 600 | no | \(-1\) | \(1\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{421}{600}\right)\) | \(e\left(\frac{269}{600}\right)\) | \(e\left(\frac{93}{100}\right)\) | \(e\left(\frac{1}{200}\right)\) | \(e\left(\frac{119}{150}\right)\) | \(e\left(\frac{127}{600}\right)\) | \(e\left(\frac{1}{75}\right)\) | \(e\left(\frac{153}{200}\right)\) | \(e\left(\frac{187}{300}\right)\) |
\(\chi_{216000}(77,\cdot)\) | 216000.yx | 3600 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{360}\right)\) | \(e\left(\frac{3571}{3600}\right)\) | \(e\left(\frac{2669}{3600}\right)\) | \(e\left(\frac{71}{75}\right)\) | \(e\left(\frac{1051}{1200}\right)\) | \(e\left(\frac{1363}{1800}\right)\) | \(e\left(\frac{2677}{3600}\right)\) | \(e\left(\frac{1}{450}\right)\) | \(e\left(\frac{953}{1200}\right)\) | \(e\left(\frac{637}{1800}\right)\) |
\(\chi_{216000}(79,\cdot)\) | 216000.ww | 900 | no | \(-1\) | \(1\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{263}{900}\right)\) | \(e\left(\frac{157}{900}\right)\) | \(e\left(\frac{29}{150}\right)\) | \(e\left(\frac{203}{300}\right)\) | \(e\left(\frac{239}{450}\right)\) | \(e\left(\frac{131}{900}\right)\) | \(e\left(\frac{437}{450}\right)\) | \(e\left(\frac{109}{300}\right)\) | \(e\left(\frac{11}{450}\right)\) |
\(\chi_{216000}(83,\cdot)\) | 216000.yw | 3600 | yes | \(-1\) | \(1\) | \(e\left(\frac{113}{360}\right)\) | \(e\left(\frac{323}{3600}\right)\) | \(e\left(\frac{2797}{3600}\right)\) | \(e\left(\frac{71}{150}\right)\) | \(e\left(\frac{1163}{1200}\right)\) | \(e\left(\frac{1019}{1800}\right)\) | \(e\left(\frac{1901}{3600}\right)\) | \(e\left(\frac{169}{225}\right)\) | \(e\left(\frac{889}{1200}\right)\) | \(e\left(\frac{1781}{1800}\right)\) |
\(\chi_{216000}(89,\cdot)\) | 216000.vj | 600 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{571}{600}\right)\) | \(e\left(\frac{569}{600}\right)\) | \(e\left(\frac{9}{50}\right)\) | \(e\left(\frac{151}{200}\right)\) | \(e\left(\frac{13}{300}\right)\) | \(e\left(\frac{277}{600}\right)\) | \(e\left(\frac{1}{75}\right)\) | \(e\left(\frac{53}{200}\right)\) | \(e\left(\frac{187}{300}\right)\) |
\(\chi_{216000}(91,\cdot)\) | 216000.xj | 1200 | no | \(-1\) | \(1\) | \(e\left(\frac{103}{120}\right)\) | \(e\left(\frac{1063}{1200}\right)\) | \(e\left(\frac{557}{1200}\right)\) | \(e\left(\frac{27}{100}\right)\) | \(e\left(\frac{303}{400}\right)\) | \(e\left(\frac{289}{600}\right)\) | \(e\left(\frac{481}{1200}\right)\) | \(e\left(\frac{14}{75}\right)\) | \(e\left(\frac{9}{400}\right)\) | \(e\left(\frac{61}{600}\right)\) |
\(\chi_{216000}(97,\cdot)\) | 216000.wo | 900 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{180}\right)\) | \(e\left(\frac{229}{450}\right)\) | \(e\left(\frac{637}{900}\right)\) | \(e\left(\frac{103}{300}\right)\) | \(e\left(\frac{62}{75}\right)\) | \(e\left(\frac{823}{900}\right)\) | \(e\left(\frac{149}{225}\right)\) | \(e\left(\frac{46}{225}\right)\) | \(e\left(\frac{169}{300}\right)\) | \(e\left(\frac{13}{225}\right)\) |
\(\chi_{216000}(101,\cdot)\) | 216000.vx | 720 | no | \(-1\) | \(1\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{337}{720}\right)\) | \(e\left(\frac{683}{720}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{97}{240}\right)\) | \(e\left(\frac{271}{360}\right)\) | \(e\left(\frac{559}{720}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{191}{240}\right)\) | \(e\left(\frac{319}{360}\right)\) |
\(\chi_{216000}(103,\cdot)\) | 216000.xw | 1800 | no | \(1\) | \(1\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{1361}{1800}\right)\) | \(e\left(\frac{1129}{1800}\right)\) | \(e\left(\frac{263}{300}\right)\) | \(e\left(\frac{341}{600}\right)\) | \(e\left(\frac{79}{450}\right)\) | \(e\left(\frac{1607}{1800}\right)\) | \(e\left(\frac{7}{450}\right)\) | \(e\left(\frac{373}{600}\right)\) | \(e\left(\frac{767}{900}\right)\) |
\(\chi_{216000}(107,\cdot)\) | 216000.mo | 80 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{37}{80}\right)\) | \(e\left(\frac{43}{80}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{71}{80}\right)\) | \(e\left(\frac{21}{40}\right)\) | \(e\left(\frac{59}{80}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{13}{80}\right)\) | \(e\left(\frac{19}{40}\right)\) |
\(\chi_{216000}(109,\cdot)\) | 216000.tz | 400 | no | \(1\) | \(1\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{91}{400}\right)\) | \(e\left(\frac{249}{400}\right)\) | \(e\left(\frac{67}{100}\right)\) | \(e\left(\frac{313}{400}\right)\) | \(e\left(\frac{173}{200}\right)\) | \(e\left(\frac{117}{400}\right)\) | \(e\left(\frac{21}{50}\right)\) | \(e\left(\frac{239}{400}\right)\) | \(e\left(\frac{177}{200}\right)\) |
\(\chi_{216000}(113,\cdot)\) | 216000.xb | 900 | no | \(1\) | \(1\) | \(e\left(\frac{17}{180}\right)\) | \(e\left(\frac{631}{900}\right)\) | \(e\left(\frac{221}{225}\right)\) | \(e\left(\frac{71}{300}\right)\) | \(e\left(\frac{211}{300}\right)\) | \(e\left(\frac{761}{900}\right)\) | \(e\left(\frac{547}{900}\right)\) | \(e\left(\frac{197}{225}\right)\) | \(e\left(\frac{2}{75}\right)\) | \(e\left(\frac{41}{225}\right)\) |
\(\chi_{216000}(119,\cdot)\) | 216000.yf | 1800 | no | \(1\) | \(1\) | \(e\left(\frac{19}{180}\right)\) | \(e\left(\frac{1519}{1800}\right)\) | \(e\left(\frac{41}{1800}\right)\) | \(e\left(\frac{101}{150}\right)\) | \(e\left(\frac{139}{600}\right)\) | \(e\left(\frac{607}{900}\right)\) | \(e\left(\frac{1453}{1800}\right)\) | \(e\left(\frac{353}{450}\right)\) | \(e\left(\frac{317}{600}\right)\) | \(e\left(\frac{43}{900}\right)\) |