Properties

Modulus $21$
Structure \(C_{2}\times C_{6}\)
Order $12$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(21)
 
pari: g = idealstar(,21,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 12
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{6}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{21}(8,\cdot)$, $\chi_{21}(10,\cdot)$

Characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(11\) \(13\) \(16\) \(17\) \(19\)
\(\chi_{21}(1,\cdot)\) 21.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{21}(2,\cdot)\) 21.h 6 yes \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{21}(4,\cdot)\) 21.e 3 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{21}(5,\cdot)\) 21.g 6 yes \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{21}(8,\cdot)\) 21.b 2 no \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(1\)
\(\chi_{21}(10,\cdot)\) 21.f 6 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{21}(11,\cdot)\) 21.h 6 yes \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{21}(13,\cdot)\) 21.d 2 no \(-1\) \(1\) \(1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\)
\(\chi_{21}(16,\cdot)\) 21.e 3 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{21}(17,\cdot)\) 21.g 6 yes \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{21}(19,\cdot)\) 21.f 6 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{21}(20,\cdot)\) 21.c 2 yes \(1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\)