Properties

Label 209.7
Modulus $209$
Conductor $209$
Order $30$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(209, base_ring=CyclotomicField(30))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([21,10]))
 
pari: [g,chi] = znchar(Mod(7,209))
 

Basic properties

Modulus: \(209\)
Conductor: \(209\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 209.s

\(\chi_{209}(7,\cdot)\) \(\chi_{209}(30,\cdot)\) \(\chi_{209}(68,\cdot)\) \(\chi_{209}(83,\cdot)\) \(\chi_{209}(106,\cdot)\) \(\chi_{209}(140,\cdot)\) \(\chi_{209}(178,\cdot)\) \(\chi_{209}(182,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.0.492804333687064066258882287420865640909549691972387971.1

Values on generators

\((134,78)\) → \((e\left(\frac{7}{10}\right),e\left(\frac{1}{3}\right))\)

Values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 209 }(7, a) \) \(-1\)\(1\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{1}{6}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 209 }(7,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 209 }(7,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 209 }(7,·),\chi_{ 209 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 209 }(7,·)) \;\) at \(\; a,b = \) e.g. 1,2