Properties

Label 208.l
Modulus $208$
Conductor $208$
Order $4$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([2,3,3])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(83,208)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(208\)
Conductor: \(208\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.4499456.2

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(15\) \(17\) \(19\) \(21\) \(23\)
\(\chi_{208}(83,\cdot)\) \(1\) \(1\) \(-i\) \(-1\) \(i\) \(-1\) \(-1\) \(i\) \(-1\) \(-1\) \(1\) \(-1\)
\(\chi_{208}(203,\cdot)\) \(1\) \(1\) \(i\) \(-1\) \(-i\) \(-1\) \(-1\) \(-i\) \(-1\) \(-1\) \(1\) \(-1\)