sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(207, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([55,42]))
pari:[g,chi] = znchar(Mod(59,207))
| Modulus: | \(207\) | |
| Conductor: | \(207\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(66\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{207}(2,\cdot)\)
\(\chi_{207}(29,\cdot)\)
\(\chi_{207}(32,\cdot)\)
\(\chi_{207}(41,\cdot)\)
\(\chi_{207}(50,\cdot)\)
\(\chi_{207}(59,\cdot)\)
\(\chi_{207}(77,\cdot)\)
\(\chi_{207}(95,\cdot)\)
\(\chi_{207}(101,\cdot)\)
\(\chi_{207}(104,\cdot)\)
\(\chi_{207}(110,\cdot)\)
\(\chi_{207}(119,\cdot)\)
\(\chi_{207}(128,\cdot)\)
\(\chi_{207}(131,\cdot)\)
\(\chi_{207}(140,\cdot)\)
\(\chi_{207}(146,\cdot)\)
\(\chi_{207}(164,\cdot)\)
\(\chi_{207}(167,\cdot)\)
\(\chi_{207}(173,\cdot)\)
\(\chi_{207}(200,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((47,28)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{7}{11}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
| \( \chi_{ 207 }(59, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7}{66}\right)\) | \(e\left(\frac{7}{33}\right)\) | \(e\left(\frac{53}{66}\right)\) | \(e\left(\frac{14}{33}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{37}{66}\right)\) | \(e\left(\frac{19}{33}\right)\) | \(e\left(\frac{35}{66}\right)\) | \(e\left(\frac{14}{33}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)