Properties

Label 2040.1709
Modulus $2040$
Conductor $2040$
Order $8$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2040, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([0,4,4,4,1]))
 
Copy content pari:[g,chi] = znchar(Mod(1709,2040))
 

Basic properties

Modulus: \(2040\)
Conductor: \(2040\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2040.df

\(\chi_{2040}(389,\cdot)\) \(\chi_{2040}(869,\cdot)\) \(\chi_{2040}(1589,\cdot)\) \(\chi_{2040}(1709,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.0.85087827233280000.1

Values on generators

\((511,1021,1361,817,241)\) → \((1,-1,-1,-1,e\left(\frac{1}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 2040 }(1709, a) \) \(-1\)\(1\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(-1\)\(i\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2040 }(1709,a) \;\) at \(\;a = \) e.g. 2