sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2028, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([78,78,109]))
pari:[g,chi] = znchar(Mod(1211,2028))
Modulus: | \(2028\) | |
Conductor: | \(2028\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(156\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2028}(11,\cdot)\)
\(\chi_{2028}(59,\cdot)\)
\(\chi_{2028}(71,\cdot)\)
\(\chi_{2028}(119,\cdot)\)
\(\chi_{2028}(167,\cdot)\)
\(\chi_{2028}(215,\cdot)\)
\(\chi_{2028}(227,\cdot)\)
\(\chi_{2028}(275,\cdot)\)
\(\chi_{2028}(323,\cdot)\)
\(\chi_{2028}(371,\cdot)\)
\(\chi_{2028}(383,\cdot)\)
\(\chi_{2028}(431,\cdot)\)
\(\chi_{2028}(479,\cdot)\)
\(\chi_{2028}(527,\cdot)\)
\(\chi_{2028}(539,\cdot)\)
\(\chi_{2028}(635,\cdot)\)
\(\chi_{2028}(683,\cdot)\)
\(\chi_{2028}(743,\cdot)\)
\(\chi_{2028}(791,\cdot)\)
\(\chi_{2028}(839,\cdot)\)
\(\chi_{2028}(851,\cdot)\)
\(\chi_{2028}(899,\cdot)\)
\(\chi_{2028}(947,\cdot)\)
\(\chi_{2028}(1007,\cdot)\)
\(\chi_{2028}(1055,\cdot)\)
\(\chi_{2028}(1151,\cdot)\)
\(\chi_{2028}(1163,\cdot)\)
\(\chi_{2028}(1211,\cdot)\)
\(\chi_{2028}(1259,\cdot)\)
\(\chi_{2028}(1307,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1015,677,1861)\) → \((-1,-1,e\left(\frac{109}{156}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 2028 }(1211, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{41}{156}\right)\) | \(e\left(\frac{151}{156}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{35}{78}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{2}{39}\right)\) |
sage:chi.jacobi_sum(n)