Properties

Label 2028.1211
Modulus $2028$
Conductor $2028$
Order $156$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([78,78,109]))
 
Copy content pari:[g,chi] = znchar(Mod(1211,2028))
 

Basic properties

Modulus: \(2028\)
Conductor: \(2028\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2028.bv

\(\chi_{2028}(11,\cdot)\) \(\chi_{2028}(59,\cdot)\) \(\chi_{2028}(71,\cdot)\) \(\chi_{2028}(119,\cdot)\) \(\chi_{2028}(167,\cdot)\) \(\chi_{2028}(215,\cdot)\) \(\chi_{2028}(227,\cdot)\) \(\chi_{2028}(275,\cdot)\) \(\chi_{2028}(323,\cdot)\) \(\chi_{2028}(371,\cdot)\) \(\chi_{2028}(383,\cdot)\) \(\chi_{2028}(431,\cdot)\) \(\chi_{2028}(479,\cdot)\) \(\chi_{2028}(527,\cdot)\) \(\chi_{2028}(539,\cdot)\) \(\chi_{2028}(635,\cdot)\) \(\chi_{2028}(683,\cdot)\) \(\chi_{2028}(743,\cdot)\) \(\chi_{2028}(791,\cdot)\) \(\chi_{2028}(839,\cdot)\) \(\chi_{2028}(851,\cdot)\) \(\chi_{2028}(899,\cdot)\) \(\chi_{2028}(947,\cdot)\) \(\chi_{2028}(1007,\cdot)\) \(\chi_{2028}(1055,\cdot)\) \(\chi_{2028}(1151,\cdot)\) \(\chi_{2028}(1163,\cdot)\) \(\chi_{2028}(1211,\cdot)\) \(\chi_{2028}(1259,\cdot)\) \(\chi_{2028}(1307,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((1015,677,1861)\) → \((-1,-1,e\left(\frac{109}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 2028 }(1211, a) \) \(-1\)\(1\)\(e\left(\frac{41}{52}\right)\)\(e\left(\frac{41}{156}\right)\)\(e\left(\frac{151}{156}\right)\)\(e\left(\frac{20}{39}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{15}{26}\right)\)\(e\left(\frac{35}{78}\right)\)\(e\left(\frac{9}{52}\right)\)\(e\left(\frac{2}{39}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2028 }(1211,a) \;\) at \(\;a = \) e.g. 2