sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2025, base_ring=CyclotomicField(540))
M = H._module
chi = DirichletCharacter(H, M([70,459]))
pari:[g,chi] = znchar(Mod(47,2025))
| Modulus: | \(2025\) | |
| Conductor: | \(2025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(540\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2025}(2,\cdot)\)
\(\chi_{2025}(23,\cdot)\)
\(\chi_{2025}(38,\cdot)\)
\(\chi_{2025}(47,\cdot)\)
\(\chi_{2025}(77,\cdot)\)
\(\chi_{2025}(83,\cdot)\)
\(\chi_{2025}(92,\cdot)\)
\(\chi_{2025}(113,\cdot)\)
\(\chi_{2025}(122,\cdot)\)
\(\chi_{2025}(128,\cdot)\)
\(\chi_{2025}(137,\cdot)\)
\(\chi_{2025}(158,\cdot)\)
\(\chi_{2025}(167,\cdot)\)
\(\chi_{2025}(173,\cdot)\)
\(\chi_{2025}(203,\cdot)\)
\(\chi_{2025}(212,\cdot)\)
\(\chi_{2025}(227,\cdot)\)
\(\chi_{2025}(248,\cdot)\)
\(\chi_{2025}(263,\cdot)\)
\(\chi_{2025}(272,\cdot)\)
\(\chi_{2025}(302,\cdot)\)
\(\chi_{2025}(308,\cdot)\)
\(\chi_{2025}(317,\cdot)\)
\(\chi_{2025}(338,\cdot)\)
\(\chi_{2025}(347,\cdot)\)
\(\chi_{2025}(353,\cdot)\)
\(\chi_{2025}(362,\cdot)\)
\(\chi_{2025}(383,\cdot)\)
\(\chi_{2025}(392,\cdot)\)
\(\chi_{2025}(398,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((326,1702)\) → \((e\left(\frac{7}{54}\right),e\left(\frac{17}{20}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 2025 }(47, a) \) |
\(1\) | \(1\) | \(e\left(\frac{529}{540}\right)\) | \(e\left(\frac{259}{270}\right)\) | \(e\left(\frac{35}{108}\right)\) | \(e\left(\frac{169}{180}\right)\) | \(e\left(\frac{77}{270}\right)\) | \(e\left(\frac{101}{540}\right)\) | \(e\left(\frac{41}{135}\right)\) | \(e\left(\frac{124}{135}\right)\) | \(e\left(\frac{59}{180}\right)\) | \(e\left(\frac{47}{90}\right)\) |
sage:chi.jacobi_sum(n)