Properties

Conductor 2019
Order 2
Real yes
Primitive yes
Minimal yes
Parity odd
Orbit label 2019.c

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(2019)
 
sage: chi = H[2018]
 
pari: [g,chi] = znchar(Mod(2018,2019))
 

Kronecker symbol representation

sage: kronecker_character(-2019)
 
pari: znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{-2019}{\bullet}\right)\)

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 2019
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 2
Real = yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = yes
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = odd
Orbit label = 2019.c
Orbit index = 3

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{2019}(2018,\cdot)\)

Values on generators

\((674,1351)\) → \((-1,-1)\)

Values

-11245781011131416
\(-1\)\(1\)\(-1\)\(1\)\(1\)\(1\)\(-1\)\(-1\)\(1\)\(1\)\(-1\)\(1\)
value at  e.g. 2

Related number fields

Field of values \(\Q\)