# Properties

 Label 2015.366 Modulus $2015$ Conductor $403$ Order $12$ Real no Primitive no Minimal yes Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(2015)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,1,4]))

pari: [g,chi] = znchar(Mod(366,2015))

## Basic properties

 Modulus: $$2015$$ Conductor: $$403$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$12$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{403}(366,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 2015.cw

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(807,1861,716)$$ → $$(1,e\left(\frac{1}{12}\right),e\left(\frac{1}{3}\right))$$

## Values

 $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$6$$ $$7$$ $$8$$ $$9$$ $$11$$ $$12$$ $$14$$ $$-1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-i$$ $$i$$ $$i$$ $$e\left(\frac{1}{3}\right)$$ $$i$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{12})$$ Fixed field: 12.0.1528517537730888280139317.2