# Properties

 Label 2015.226 Modulus $2015$ Conductor $403$ Order $60$ Real no Primitive no Minimal yes Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(2015)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,45,4]))

pari: [g,chi] = znchar(Mod(226,2015))

## Basic properties

 Modulus: $$2015$$ Conductor: $$403$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$60$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{403}(226,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 2015.hg

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(807,1861,716)$$ → $$(1,-i,e\left(\frac{1}{15}\right))$$

## Values

 $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$6$$ $$7$$ $$8$$ $$9$$ $$11$$ $$12$$ $$14$$ $$-1$$ $$1$$ $$e\left(\frac{7}{20}\right)$$ $$e\left(\frac{1}{15}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{7}{60}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{2}{15}\right)$$ $$e\left(\frac{47}{60}\right)$$ $$e\left(\frac{23}{30}\right)$$ $$e\left(\frac{7}{15}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{60})$$ Fixed field: Number field defined by a degree 60 polynomial