Properties

Conductor 2011
Order 6
Real No
Primitive Yes
Parity Odd
Orbit Label 2011.e

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(2011)
sage: chi = H[206]
pari: [g,chi] = znchar(Mod(206,2011))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 2011
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 6
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = Yes
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Odd
Orbit label = 2011.e
Orbit index = 5

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{2011}(206,\cdot)\) \(\chi_{2011}(1806,\cdot)\)

Values on generators

\(3\) → \(e\left(\frac{1}{6}\right)\)

Values

-11234567891011
\(-1\)\(1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)\(e\left(\frac{1}{6}\right)\)\(-1\)\(e\left(\frac{1}{3}\right)\)\(-1\)\(e\left(\frac{5}{6}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{3})\)