# Properties

 Label 2001.1220 Modulus $2001$ Conductor $87$ Order $28$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(2001, base_ring=CyclotomicField(28))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([14,0,1]))

pari: [g,chi] = znchar(Mod(1220,2001))

## Basic properties

 Modulus: $$2001$$ Conductor: $$87$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$28$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{87}(2,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 2001.bc

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{28})$$ Fixed field: $$\Q(\zeta_{87})^+$$

## Values on generators

$$(668,1132,553)$$ → $$(-1,1,e\left(\frac{1}{28}\right))$$

## Values

 $$-1$$ $$1$$ $$2$$ $$4$$ $$5$$ $$7$$ $$8$$ $$10$$ $$11$$ $$13$$ $$14$$ $$16$$ $$1$$ $$1$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{3}{7}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{1}{7}\right)$$
 value at e.g. 2