sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(20, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([0,1]))
pari:[g,chi] = znchar(Mod(17,20))
\(\chi_{20}(13,\cdot)\)
\(\chi_{20}(17,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((11,17)\) → \((1,i)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) |
| \( \chi_{ 20 }(17, a) \) |
\(-1\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(1\) | \(-i\) | \(i\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)