sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(199, base_ring=CyclotomicField(66))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([26]))
pari: [g,chi] = znchar(Mod(25,199))
Basic properties
Modulus: | \(199\) | |
Conductor: | \(199\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(33\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 199.i
\(\chi_{199}(5,\cdot)\) \(\chi_{199}(8,\cdot)\) \(\chi_{199}(25,\cdot)\) \(\chi_{199}(28,\cdot)\) \(\chi_{199}(40,\cdot)\) \(\chi_{199}(52,\cdot)\) \(\chi_{199}(64,\cdot)\) \(\chi_{199}(90,\cdot)\) \(\chi_{199}(98,\cdot)\) \(\chi_{199}(111,\cdot)\) \(\chi_{199}(116,\cdot)\) \(\chi_{199}(117,\cdot)\) \(\chi_{199}(123,\cdot)\) \(\chi_{199}(132,\cdot)\) \(\chi_{199}(140,\cdot)\) \(\chi_{199}(144,\cdot)\) \(\chi_{199}(157,\cdot)\) \(\chi_{199}(172,\cdot)\) \(\chi_{199}(182,\cdot)\) \(\chi_{199}(187,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{33})\) |
Fixed field: | 33.33.36584611296554742180833097810429342639777502523008874222975105176339833601.1 |
Values on generators
\(3\) → \(e\left(\frac{13}{33}\right)\)
Values
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\(1\) | \(1\) | \(e\left(\frac{25}{33}\right)\) | \(e\left(\frac{13}{33}\right)\) | \(e\left(\frac{17}{33}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{5}{33}\right)\) | \(e\left(\frac{31}{33}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{4}{33}\right)\) | \(e\left(\frac{5}{11}\right)\) |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{199}(25,\cdot)) = \sum_{r\in \Z/199\Z} \chi_{199}(25,r) e\left(\frac{2r}{199}\right) = 0.2156556218+-14.1050874741i \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{199}(25,\cdot),\chi_{199}(1,\cdot)) = \sum_{r\in \Z/199\Z} \chi_{199}(25,r) \chi_{199}(1,1-r) = -1 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{199}(25,·))
= \sum_{r \in \Z/199\Z}
\chi_{199}(25,r) e\left(\frac{1 r + 2 r^{-1}}{199}\right)
= 7.2605813318+-6.9229503166i \)