Properties

Label 1960.127
Modulus $1960$
Conductor $980$
Order $28$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1960, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([14,0,7,12]))
 
pari: [g,chi] = znchar(Mod(127,1960))
 

Basic properties

Modulus: \(1960\)
Conductor: \(980\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{980}(127,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1960.cu

\(\chi_{1960}(127,\cdot)\) \(\chi_{1960}(183,\cdot)\) \(\chi_{1960}(407,\cdot)\) \(\chi_{1960}(463,\cdot)\) \(\chi_{1960}(743,\cdot)\) \(\chi_{1960}(967,\cdot)\) \(\chi_{1960}(1023,\cdot)\) \(\chi_{1960}(1247,\cdot)\) \(\chi_{1960}(1303,\cdot)\) \(\chi_{1960}(1527,\cdot)\) \(\chi_{1960}(1583,\cdot)\) \(\chi_{1960}(1807,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

\((1471,981,1177,1081)\) → \((-1,1,i,e\left(\frac{3}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 1960 }(127, a) \) \(1\)\(1\)\(e\left(\frac{19}{28}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{25}{28}\right)\)\(e\left(\frac{27}{28}\right)\)\(1\)\(e\left(\frac{15}{28}\right)\)\(e\left(\frac{1}{28}\right)\)\(e\left(\frac{3}{14}\right)\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1960 }(127,a) \;\) at \(\;a = \) e.g. 2