Properties

Label 1960.1037
Modulus $1960$
Conductor $1960$
Order $28$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1960, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,14,7,24]))
 
pari: [g,chi] = znchar(Mod(1037,1960))
 

Basic properties

Modulus: \(1960\)
Conductor: \(1960\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1960.ct

\(\chi_{1960}(253,\cdot)\) \(\chi_{1960}(477,\cdot)\) \(\chi_{1960}(533,\cdot)\) \(\chi_{1960}(757,\cdot)\) \(\chi_{1960}(813,\cdot)\) \(\chi_{1960}(1037,\cdot)\) \(\chi_{1960}(1093,\cdot)\) \(\chi_{1960}(1317,\cdot)\) \(\chi_{1960}(1597,\cdot)\) \(\chi_{1960}(1653,\cdot)\) \(\chi_{1960}(1877,\cdot)\) \(\chi_{1960}(1933,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

\((1471,981,1177,1081)\) → \((1,-1,i,e\left(\frac{6}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 1960 }(1037, a) \) \(-1\)\(1\)\(e\left(\frac{3}{28}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{15}{28}\right)\)\(e\left(\frac{19}{28}\right)\)\(1\)\(e\left(\frac{9}{28}\right)\)\(e\left(\frac{9}{28}\right)\)\(e\left(\frac{3}{7}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1960 }(1037,a) \;\) at \(\;a = \) e.g. 2