# Properties

 Label 1950.49 Modulus $1950$ Conductor $65$ Order $6$ Real no Primitive no Minimal no Parity even

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1950, base_ring=CyclotomicField(6))

M = H._module

chi = DirichletCharacter(H, M([0,3,5]))

pari: [g,chi] = znchar(Mod(49,1950))

## Basic properties

 Modulus: $$1950$$ Conductor: $$65$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$6$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{65}(49,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1950.y

sage: chi.galois_orbit()

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\sqrt{-3})$$ Fixed field: 6.6.46411625.1

## Values on generators

$$(1301,1327,301)$$ → $$(1,-1,e\left(\frac{5}{6}\right))$$

## Values

 $$a$$ $$-1$$ $$1$$ $$7$$ $$11$$ $$17$$ $$19$$ $$23$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$ $$\chi_{ 1950 }(49, a)$$ $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 1950 }(49,a) \;$$ at $$\;a =$$ e.g. 2