sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1950, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([0,0,1]))
pari:[g,chi] = znchar(Mod(901,1950))
\(\chi_{1950}(751,\cdot)\)
\(\chi_{1950}(901,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1301,1327,301)\) → \((1,1,e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 1950 }(901, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
sage:chi.jacobi_sum(n)