Properties

Label 1950.649
Modulus $1950$
Conductor $65$
Order $2$
Real yes
Primitive no
Minimal no
Parity even

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1950, base_ring=CyclotomicField(2))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,1,1]))
 
pari: [g,chi] = znchar(Mod(649,1950))
 

Basic properties

Modulus: \(1950\)
Conductor: \(65\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{65}(64,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1950.f

\(\chi_{1950}(649,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{65}) \)

Values on generators

\((1301,1327,301)\) → \((1,-1,-1)\)

Values

\(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\(1\)\(1\)\(1\)\(-1\)\(-1\)\(-1\)\(-1\)\(1\)\(-1\)\(1\)\(-1\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1950 }(649,a) \;\) at \(\;a = \) e.g. 2