Properties

Label 1944.1457
Modulus $1944$
Conductor $3$
Order $2$
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1944, base_ring=CyclotomicField(2))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,0,1]))
 
pari: [g,chi] = znchar(Mod(1457,1944))
 

Basic properties

Modulus: \(1944\)
Conductor: \(3\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{3}(2,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1944.e

\(\chi_{1944}(1457,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{-3}) \)

Values on generators

\((487,973,1217)\) → \((1,1,-1)\)

Values

\(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\(-1\)\(1\)\(-1\)\(1\)\(-1\)\(1\)\(-1\)\(1\)\(-1\)\(1\)\(-1\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1944 }(1457,a) \;\) at \(\;a = \) e.g. 2