Properties

Label 1911.125
Modulus $1911$
Conductor $1911$
Order $28$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1911, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([14,2,7]))
 
pari: [g,chi] = znchar(Mod(125,1911))
 

Basic properties

Modulus: \(1911\)
Conductor: \(1911\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1911.cv

\(\chi_{1911}(83,\cdot)\) \(\chi_{1911}(125,\cdot)\) \(\chi_{1911}(356,\cdot)\) \(\chi_{1911}(398,\cdot)\) \(\chi_{1911}(629,\cdot)\) \(\chi_{1911}(671,\cdot)\) \(\chi_{1911}(902,\cdot)\) \(\chi_{1911}(944,\cdot)\) \(\chi_{1911}(1217,\cdot)\) \(\chi_{1911}(1448,\cdot)\) \(\chi_{1911}(1490,\cdot)\) \(\chi_{1911}(1721,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

\((638,1522,1471)\) → \((-1,e\left(\frac{1}{14}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 1911 }(125, a) \) \(-1\)\(1\)\(e\left(\frac{17}{28}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{23}{28}\right)\)\(e\left(\frac{23}{28}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{3}{28}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(-i\)\(e\left(\frac{1}{28}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1911 }(125,a) \;\) at \(\;a = \) e.g. 2