Properties

Conductor 191
Order 10
Real No
Primitive Yes
Parity Odd
Orbit Label 191.d

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(191)
 
sage: chi = H[7]
 
pari: [g,chi] = znchar(Mod(7,191))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 191
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 10
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = Yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Odd
Orbit label = 191.d
Orbit index = 4

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{191}(7,\cdot)\) \(\chi_{191}(82,\cdot)\) \(\chi_{191}(142,\cdot)\) \(\chi_{191}(152,\cdot)\)

Values on generators

\(19\) → \(e\left(\frac{9}{10}\right)\)

Values

-11234567891011
\(-1\)\(1\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{5}\right)\)\(1\)\(1\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(-1\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{5})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 191 }(7,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{191}(7,\cdot)) = \sum_{r\in \Z/191\Z} \chi_{191}(7,r) e\left(\frac{2r}{191}\right) = -9.1472334985+10.3599285386i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 191 }(7,·),\chi_{ 191 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{191}(7,\cdot),\chi_{191}(1,\cdot)) = \sum_{r\in \Z/191\Z} \chi_{191}(7,r) \chi_{191}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 191 }(7,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{191}(7,·)) = \sum_{r \in \Z/191\Z} \chi_{191}(7,r) e\left(\frac{1 r + 2 r^{-1}}{191}\right) = 3.7870913774+1.23050058i \)