Properties

Label 191.32
Modulus $191$
Conductor $191$
Order $19$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(191, base_ring=CyclotomicField(38))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([6]))
 
pari: [g,chi] = znchar(Mod(32,191))
 

Basic properties

Modulus: \(191\)
Conductor: \(191\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(19\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 191.e

\(\chi_{191}(5,\cdot)\) \(\chi_{191}(6,\cdot)\) \(\chi_{191}(25,\cdot)\) \(\chi_{191}(30,\cdot)\) \(\chi_{191}(32,\cdot)\) \(\chi_{191}(36,\cdot)\) \(\chi_{191}(52,\cdot)\) \(\chi_{191}(69,\cdot)\) \(\chi_{191}(107,\cdot)\) \(\chi_{191}(121,\cdot)\) \(\chi_{191}(125,\cdot)\) \(\chi_{191}(136,\cdot)\) \(\chi_{191}(150,\cdot)\) \(\chi_{191}(153,\cdot)\) \(\chi_{191}(154,\cdot)\) \(\chi_{191}(160,\cdot)\) \(\chi_{191}(177,\cdot)\) \(\chi_{191}(180,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{19})\)
Fixed field: 19.19.114445997944945591651333831028437092270721.1

Values on generators

\(19\) → \(e\left(\frac{3}{19}\right)\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\(1\)\(1\)\(e\left(\frac{18}{19}\right)\)\(e\left(\frac{6}{19}\right)\)\(e\left(\frac{17}{19}\right)\)\(e\left(\frac{17}{19}\right)\)\(e\left(\frac{5}{19}\right)\)\(1\)\(e\left(\frac{16}{19}\right)\)\(e\left(\frac{12}{19}\right)\)\(e\left(\frac{16}{19}\right)\)\(e\left(\frac{8}{19}\right)\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 191 }(32,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{191}(32,\cdot)) = \sum_{r\in \Z/191\Z} \chi_{191}(32,r) e\left(\frac{2r}{191}\right) = 13.7793620727+1.0626292244i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 191 }(32,·),\chi_{ 191 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{191}(32,\cdot),\chi_{191}(1,\cdot)) = \sum_{r\in \Z/191\Z} \chi_{191}(32,r) \chi_{191}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 191 }(32,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{191}(32,·)) = \sum_{r \in \Z/191\Z} \chi_{191}(32,r) e\left(\frac{1 r + 2 r^{-1}}{191}\right) = 7.8103294908+-1.3033134796i \)