Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 191 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 95 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | Yes |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Even |
Orbit label | = | 191.g |
Orbit index | = | 7 |
Galois orbit
\(\chi_{191}(2,\cdot)\) \(\chi_{191}(3,\cdot)\) \(\chi_{191}(4,\cdot)\) \(\chi_{191}(8,\cdot)\) \(\chi_{191}(9,\cdot)\) \(\chi_{191}(10,\cdot)\) \(\chi_{191}(12,\cdot)\) \(\chi_{191}(13,\cdot)\) \(\chi_{191}(15,\cdot)\) \(\chi_{191}(16,\cdot)\) \(\chi_{191}(17,\cdot)\) \(\chi_{191}(18,\cdot)\) \(\chi_{191}(20,\cdot)\) \(\chi_{191}(23,\cdot)\) \(\chi_{191}(24,\cdot)\) \(\chi_{191}(26,\cdot)\) \(\chi_{191}(27,\cdot)\) \(\chi_{191}(34,\cdot)\) \(\chi_{191}(40,\cdot)\) \(\chi_{191}(43,\cdot)\) \(\chi_{191}(45,\cdot)\) \(\chi_{191}(46,\cdot)\) \(\chi_{191}(48,\cdot)\) \(\chi_{191}(50,\cdot)\) \(\chi_{191}(51,\cdot)\) \(\chi_{191}(54,\cdot)\) \(\chi_{191}(59,\cdot)\) \(\chi_{191}(60,\cdot)\) \(\chi_{191}(64,\cdot)\) \(\chi_{191}(65,\cdot)\) ...
Values on generators
\(19\) → \(e\left(\frac{79}{95}\right)\)
Values
-1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
\(1\) | \(1\) | \(e\left(\frac{56}{95}\right)\) | \(e\left(\frac{44}{95}\right)\) | \(e\left(\frac{17}{95}\right)\) | \(e\left(\frac{11}{19}\right)\) | \(e\left(\frac{1}{19}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{73}{95}\right)\) | \(e\left(\frac{88}{95}\right)\) | \(e\left(\frac{16}{95}\right)\) | \(e\left(\frac{13}{19}\right)\) |
Related number fields
Field of values | \(\Q(\zeta_{95})\) |