# Properties

 Label 19.15 Modulus $19$ Conductor $19$ Order $18$ Real no Primitive yes Minimal yes Parity odd

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(19, base_ring=CyclotomicField(18))

M = H._module

chi = DirichletCharacter(H, M([11]))

pari: [g,chi] = znchar(Mod(15,19))

## Basic properties

 Modulus: $$19$$ Conductor: $$19$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$18$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 19.f

sage: chi.galois_orbit()

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{9})$$ Fixed field: Number field defined by a degree 18 polynomial

## Values on generators

$$2$$ → $$e\left(\frac{11}{18}\right)$$

## Values

 $$a$$ $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$5$$ $$6$$ $$7$$ $$8$$ $$9$$ $$10$$ $$11$$ $$\chi_{ 19 }(15, a)$$ $$-1$$ $$1$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{1}{3}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 19 }(15,a) \;$$ at $$\;a =$$ e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 19 }(15,·) )\;$$ at $$\;a =$$ e.g. 2

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 19 }(15,·),\chi_{ 19 }(n,·)) \;$$ for $$\; n =$$ e.g. 1

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 19 }(15,·)) \;$$ at $$\; a,b =$$ e.g. 1,2