Properties

Modulus 19
Structure \(C_{18}\)
Order 18

Learn more about

Show commands for: SageMath / Pari/GP

sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(19)
 
pari: g = idealstar(,19,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 18
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{18}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{19}(2,\cdot)$

Characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

orbit label order primitive -1 1 2 3 4 5 6 7 8 9 10 11
\(\chi_{19}(1,\cdot)\) 19.a 1 No \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{19}(2,\cdot)\) 19.f 18 Yes \(-1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{19}(3,\cdot)\) 19.f 18 Yes \(-1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{19}(4,\cdot)\) 19.e 9 Yes \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{19}(5,\cdot)\) 19.e 9 Yes \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{19}(6,\cdot)\) 19.e 9 Yes \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{19}(7,\cdot)\) 19.c 3 Yes \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)
\(\chi_{19}(8,\cdot)\) 19.d 6 Yes \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)
\(\chi_{19}(9,\cdot)\) 19.e 9 Yes \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{19}(10,\cdot)\) 19.f 18 Yes \(-1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{19}(11,\cdot)\) 19.c 3 Yes \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)
\(\chi_{19}(12,\cdot)\) 19.d 6 Yes \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)
\(\chi_{19}(13,\cdot)\) 19.f 18 Yes \(-1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{19}(14,\cdot)\) 19.f 18 Yes \(-1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{19}(15,\cdot)\) 19.f 18 Yes \(-1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{19}(16,\cdot)\) 19.e 9 Yes \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{19}(17,\cdot)\) 19.e 9 Yes \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{19}(18,\cdot)\) 19.b 2 Yes \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(1\) \(-1\) \(1\)