sage: H = DirichletGroup(1872)
pari: g = idealstar(,1872,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 576 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{12}\times C_{12}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1872}(703,\cdot)$, $\chi_{1872}(469,\cdot)$, $\chi_{1872}(209,\cdot)$, $\chi_{1872}(145,\cdot)$ |
First 32 of 576 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1872}(1,\cdot)\) | 1872.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1872}(5,\cdot)\) | 1872.hh | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(i\) |
\(\chi_{1872}(7,\cdot)\) | 1872.gh | 12 | no | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{1872}(11,\cdot)\) | 1872.eo | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{1872}(17,\cdot)\) | 1872.dx | 6 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{1872}(19,\cdot)\) | 1872.ed | 12 | no | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1872}(23,\cdot)\) | 1872.dq | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{1872}(25,\cdot)\) | 1872.cn | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) |
\(\chi_{1872}(29,\cdot)\) | 1872.gt | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{1872}(31,\cdot)\) | 1872.fg | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-1\) |
\(\chi_{1872}(35,\cdot)\) | 1872.fc | 12 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{12}\right)\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{1872}(37,\cdot)\) | 1872.eb | 12 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(i\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{1872}(41,\cdot)\) | 1872.fu | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{1872}(43,\cdot)\) | 1872.er | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{1872}(47,\cdot)\) | 1872.gl | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) |
\(\chi_{1872}(49,\cdot)\) | 1872.cx | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{1872}(53,\cdot)\) | 1872.z | 4 | no | \(-1\) | \(1\) | \(-i\) | \(-1\) | \(-i\) | \(-1\) | \(-i\) | \(1\) | \(-1\) | \(i\) | \(1\) | \(i\) |
\(\chi_{1872}(55,\cdot)\) | 1872.bw | 6 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{1872}(59,\cdot)\) | 1872.eo | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1872}(61,\cdot)\) | 1872.eq | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{1872}(67,\cdot)\) | 1872.hk | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{1872}(71,\cdot)\) | 1872.fq | 12 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{1872}(73,\cdot)\) | 1872.bc | 4 | no | \(-1\) | \(1\) | \(-i\) | \(-i\) | \(i\) | \(-1\) | \(-i\) | \(-1\) | \(-1\) | \(-1\) | \(i\) | \(-1\) |
\(\chi_{1872}(77,\cdot)\) | 1872.eu | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) |
\(\chi_{1872}(79,\cdot)\) | 1872.cp | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) |
\(\chi_{1872}(83,\cdot)\) | 1872.ej | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) |
\(\chi_{1872}(85,\cdot)\) | 1872.hn | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{1872}(89,\cdot)\) | 1872.fm | 12 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{1872}(95,\cdot)\) | 1872.cf | 6 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{1872}(97,\cdot)\) | 1872.fw | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{1872}(101,\cdot)\) | 1872.fb | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{1872}(103,\cdot)\) | 1872.ci | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) |