Properties

Modulus $1872$
Structure \(C_{2}\times C_{2}\times C_{12}\times C_{12}\)
Order $576$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(1872)
 
pari: g = idealstar(,1872,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 576
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{12}\times C_{12}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{1872}(703,\cdot)$, $\chi_{1872}(469,\cdot)$, $\chi_{1872}(209,\cdot)$, $\chi_{1872}(145,\cdot)$

First 32 of 576 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{1872}(1,\cdot)\) 1872.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{1872}(5,\cdot)\) 1872.hh 12 yes \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(i\)
\(\chi_{1872}(7,\cdot)\) 1872.gh 12 no \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{1872}(11,\cdot)\) 1872.eo 12 yes \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{1872}(17,\cdot)\) 1872.dx 6 no \(-1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{1872}(19,\cdot)\) 1872.ed 12 no \(1\) \(1\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{1872}(23,\cdot)\) 1872.dq 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{1872}(25,\cdot)\) 1872.cn 6 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\)
\(\chi_{1872}(29,\cdot)\) 1872.gt 12 yes \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{1872}(31,\cdot)\) 1872.fg 12 no \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(-1\)
\(\chi_{1872}(35,\cdot)\) 1872.fc 12 no \(1\) \(1\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{1872}(37,\cdot)\) 1872.eb 12 no \(-1\) \(1\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(i\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{1872}(41,\cdot)\) 1872.fu 12 no \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{1872}(43,\cdot)\) 1872.er 12 yes \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{1872}(47,\cdot)\) 1872.gl 12 no \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\)
\(\chi_{1872}(49,\cdot)\) 1872.cx 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{1872}(53,\cdot)\) 1872.z 4 no \(-1\) \(1\) \(-i\) \(-1\) \(-i\) \(-1\) \(-i\) \(1\) \(-1\) \(i\) \(1\) \(i\)
\(\chi_{1872}(55,\cdot)\) 1872.bw 6 no \(-1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{1872}(59,\cdot)\) 1872.eo 12 yes \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{1872}(61,\cdot)\) 1872.eq 12 yes \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{1872}(67,\cdot)\) 1872.hk 12 yes \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{1872}(71,\cdot)\) 1872.fq 12 no \(-1\) \(1\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{1872}(73,\cdot)\) 1872.bc 4 no \(-1\) \(1\) \(-i\) \(-i\) \(i\) \(-1\) \(-i\) \(-1\) \(-1\) \(-1\) \(i\) \(-1\)
\(\chi_{1872}(77,\cdot)\) 1872.eu 12 yes \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\)
\(\chi_{1872}(79,\cdot)\) 1872.cp 6 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\)
\(\chi_{1872}(83,\cdot)\) 1872.ej 12 yes \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(i\)
\(\chi_{1872}(85,\cdot)\) 1872.hn 12 yes \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{1872}(89,\cdot)\) 1872.fm 12 no \(1\) \(1\) \(i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{1872}(95,\cdot)\) 1872.cf 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{1872}(97,\cdot)\) 1872.fw 12 no \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{1872}(101,\cdot)\) 1872.fb 12 yes \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{1872}(103,\cdot)\) 1872.ci 6 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)
Click here to search among the remaining 544 characters.