sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1860, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,6]))
pari:[g,chi] = znchar(Mod(841,1860))
\(\chi_{1860}(481,\cdot)\)
\(\chi_{1860}(721,\cdot)\)
\(\chi_{1860}(841,\cdot)\)
\(\chi_{1860}(901,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((931,1241,1117,1801)\) → \((1,1,1,e\left(\frac{3}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 1860 }(841, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) |
sage:chi.jacobi_sum(n)