Properties

Label 1860.239
Modulus $1860$
Conductor $1860$
Order $30$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([15,15,15,17]))
 
Copy content pari:[g,chi] = znchar(Mod(239,1860))
 

Basic properties

Modulus: \(1860\)
Conductor: \(1860\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1860.df

\(\chi_{1860}(179,\cdot)\) \(\chi_{1860}(239,\cdot)\) \(\chi_{1860}(539,\cdot)\) \(\chi_{1860}(1199,\cdot)\) \(\chi_{1860}(1319,\cdot)\) \(\chi_{1860}(1439,\cdot)\) \(\chi_{1860}(1499,\cdot)\) \(\chi_{1860}(1739,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.0.8351372919229097717923156885543908250114487680755204096000000000000000.1

Values on generators

\((931,1241,1117,1801)\) → \((-1,-1,-1,e\left(\frac{17}{30}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(37\)\(41\)\(43\)
\( \chi_{ 1860 }(239, a) \) \(-1\)\(1\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{23}{30}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1860 }(239,a) \;\) at \(\;a = \) e.g. 2