Properties

Label 1860.1379
Modulus $1860$
Conductor $1860$
Order $10$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([5,5,5,7]))
 
Copy content pari:[g,chi] = znchar(Mod(1379,1860))
 

Basic properties

Modulus: \(1860\)
Conductor: \(1860\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(10\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1860.bt

\(\chi_{1860}(959,\cdot)\) \(\chi_{1860}(1019,\cdot)\) \(\chi_{1860}(1139,\cdot)\) \(\chi_{1860}(1379,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.0.20559450192137769600000.1

Values on generators

\((931,1241,1117,1801)\) → \((-1,-1,-1,e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(37\)\(41\)\(43\)
\( \chi_{ 1860 }(1379, a) \) \(-1\)\(1\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(1\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{3}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1860 }(1379,a) \;\) at \(\;a = \) e.g. 2