sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1860, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,30,45,8]))
pari:[g,chi] = znchar(Mod(1073,1860))
\(\chi_{1860}(113,\cdot)\)
\(\chi_{1860}(173,\cdot)\)
\(\chi_{1860}(257,\cdot)\)
\(\chi_{1860}(293,\cdot)\)
\(\chi_{1860}(317,\cdot)\)
\(\chi_{1860}(413,\cdot)\)
\(\chi_{1860}(617,\cdot)\)
\(\chi_{1860}(857,\cdot)\)
\(\chi_{1860}(917,\cdot)\)
\(\chi_{1860}(1037,\cdot)\)
\(\chi_{1860}(1073,\cdot)\)
\(\chi_{1860}(1157,\cdot)\)
\(\chi_{1860}(1373,\cdot)\)
\(\chi_{1860}(1433,\cdot)\)
\(\chi_{1860}(1733,\cdot)\)
\(\chi_{1860}(1817,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((931,1241,1117,1801)\) → \((1,-1,-i,e\left(\frac{2}{15}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 1860 }(1073, a) \) |
\(1\) | \(1\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{47}{60}\right)\) |
sage:chi.jacobi_sum(n)