sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(185, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([27,14]))
pari:[g,chi] = znchar(Mod(178,185))
| Modulus: | \(185\) | |
| Conductor: | \(185\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{185}(3,\cdot)\)
\(\chi_{185}(28,\cdot)\)
\(\chi_{185}(58,\cdot)\)
\(\chi_{185}(62,\cdot)\)
\(\chi_{185}(67,\cdot)\)
\(\chi_{185}(77,\cdot)\)
\(\chi_{185}(78,\cdot)\)
\(\chi_{185}(102,\cdot)\)
\(\chi_{185}(132,\cdot)\)
\(\chi_{185}(152,\cdot)\)
\(\chi_{185}(173,\cdot)\)
\(\chi_{185}(178,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((112,76)\) → \((-i,e\left(\frac{7}{18}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 185 }(178, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(-1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)