# Properties

 Modulus 1849 Conductor 1849 Order 301 Real no Primitive yes Minimal yes Parity even Orbit label 1849.m

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1849)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([212]))

pari: [g,chi] = znchar(Mod(4,1849))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Modulus = 1849 Conductor = 1849 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 301 Real = no sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = yes Minimal = yes sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = even Orbit label = 1849.m Orbit index = 13

## Galois orbit

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$3$$ → $$e\left(\frac{212}{301}\right)$$

## Values

 -1 1 2 3 4 5 6 7 8 9 10 11 $$1$$ $$1$$ $$e\left(\frac{285}{301}\right)$$ $$e\left(\frac{212}{301}\right)$$ $$e\left(\frac{269}{301}\right)$$ $$e\left(\frac{281}{301}\right)$$ $$e\left(\frac{28}{43}\right)$$ $$e\left(\frac{24}{43}\right)$$ $$e\left(\frac{253}{301}\right)$$ $$e\left(\frac{123}{301}\right)$$ $$e\left(\frac{265}{301}\right)$$ $$e\left(\frac{270}{301}\right)$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(\zeta_{301})$$