Properties

Label 1840.cv
Modulus $1840$
Conductor $368$
Order $44$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1840, base_ring=CyclotomicField(44))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,11,0,20]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(101,1840))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1840\)
Conductor: \(368\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(44\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 368.w
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{44})\)
Fixed field: 44.44.7829660228065619245582194641412012312544945884150589900838471630076269829766255604192509952.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(27\) \(29\)
\(\chi_{1840}(101,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{41}{44}\right)\)
\(\chi_{1840}(141,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{15}{44}\right)\)
\(\chi_{1840}(261,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{29}{44}\right)\)
\(\chi_{1840}(301,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{39}{44}\right)\)
\(\chi_{1840}(381,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{31}{44}\right)\)
\(\chi_{1840}(501,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{25}{44}\right)\)
\(\chi_{1840}(541,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{27}{44}\right)\)
\(\chi_{1840}(581,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{21}{44}\right)\)
\(\chi_{1840}(821,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{13}{44}\right)\)
\(\chi_{1840}(901,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{1}{44}\right)\)
\(\chi_{1840}(1021,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{19}{44}\right)\)
\(\chi_{1840}(1061,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{37}{44}\right)\)
\(\chi_{1840}(1181,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{7}{44}\right)\)
\(\chi_{1840}(1221,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{17}{44}\right)\)
\(\chi_{1840}(1301,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{9}{44}\right)\)
\(\chi_{1840}(1421,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{3}{44}\right)\)
\(\chi_{1840}(1461,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{5}{44}\right)\)
\(\chi_{1840}(1501,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{43}{44}\right)\)
\(\chi_{1840}(1741,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{35}{44}\right)\)
\(\chi_{1840}(1821,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{23}{44}\right)\)