# Properties

 Label 1840.ck Modulus $1840$ Conductor $1840$ Order $44$ Real no Primitive yes Minimal yes Parity even

# Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1840, base_ring=CyclotomicField(44))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,33,22,36]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(29,1840))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$1840$$ Conductor: $$1840$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$44$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{44})$$ Fixed field: Number field defined by a degree 44 polynomial

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$3$$ $$7$$ $$9$$ $$11$$ $$13$$ $$17$$ $$19$$ $$21$$ $$27$$ $$29$$
$$\chi_{1840}(29,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{37}{44}\right)$$ $$e\left(\frac{6}{11}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{5}{44}\right)$$ $$e\left(\frac{9}{44}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{23}{44}\right)$$ $$e\left(\frac{17}{44}\right)$$ $$e\left(\frac{23}{44}\right)$$ $$e\left(\frac{43}{44}\right)$$
$$\chi_{1840}(269,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{25}{44}\right)$$ $$e\left(\frac{10}{11}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{1}{44}\right)$$ $$e\left(\frac{37}{44}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{31}{44}\right)$$ $$e\left(\frac{21}{44}\right)$$ $$e\left(\frac{31}{44}\right)$$ $$e\left(\frac{35}{44}\right)$$
$$\chi_{1840}(349,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{29}{44}\right)$$ $$e\left(\frac{5}{11}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{17}{44}\right)$$ $$e\left(\frac{13}{44}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{43}{44}\right)$$ $$e\left(\frac{5}{44}\right)$$ $$e\left(\frac{43}{44}\right)$$ $$e\left(\frac{23}{44}\right)$$
$$\chi_{1840}(469,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{23}{44}\right)$$ $$e\left(\frac{7}{11}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{15}{44}\right)$$ $$e\left(\frac{27}{44}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{25}{44}\right)$$ $$e\left(\frac{7}{44}\right)$$ $$e\left(\frac{25}{44}\right)$$ $$e\left(\frac{41}{44}\right)$$
$$\chi_{1840}(509,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{17}{44}\right)$$ $$e\left(\frac{9}{11}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{13}{44}\right)$$ $$e\left(\frac{41}{44}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{7}{44}\right)$$ $$e\left(\frac{9}{44}\right)$$ $$e\left(\frac{7}{44}\right)$$ $$e\left(\frac{15}{44}\right)$$
$$\chi_{1840}(629,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{27}{44}\right)$$ $$e\left(\frac{2}{11}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{31}{44}\right)$$ $$e\left(\frac{3}{44}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{37}{44}\right)$$ $$e\left(\frac{35}{44}\right)$$ $$e\left(\frac{37}{44}\right)$$ $$e\left(\frac{29}{44}\right)$$
$$\chi_{1840}(669,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{9}{44}\right)$$ $$e\left(\frac{8}{11}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{25}{44}\right)$$ $$e\left(\frac{1}{44}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{27}{44}\right)$$ $$e\left(\frac{41}{44}\right)$$ $$e\left(\frac{27}{44}\right)$$ $$e\left(\frac{39}{44}\right)$$
$$\chi_{1840}(749,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{41}{44}\right)$$ $$e\left(\frac{1}{11}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{21}{44}\right)$$ $$e\left(\frac{29}{44}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{35}{44}\right)$$ $$e\left(\frac{1}{44}\right)$$ $$e\left(\frac{35}{44}\right)$$ $$e\left(\frac{31}{44}\right)$$
$$\chi_{1840}(869,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{43}{44}\right)$$ $$e\left(\frac{4}{11}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{7}{44}\right)$$ $$e\left(\frac{39}{44}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{41}{44}\right)$$ $$e\left(\frac{15}{44}\right)$$ $$e\left(\frac{41}{44}\right)$$ $$e\left(\frac{25}{44}\right)$$
$$\chi_{1840}(909,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{13}{44}\right)$$ $$e\left(\frac{3}{11}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{41}{44}\right)$$ $$e\left(\frac{21}{44}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{39}{44}\right)$$ $$e\left(\frac{25}{44}\right)$$ $$e\left(\frac{39}{44}\right)$$ $$e\left(\frac{27}{44}\right)$$
$$\chi_{1840}(949,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{15}{44}\right)$$ $$e\left(\frac{6}{11}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{27}{44}\right)$$ $$e\left(\frac{31}{44}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{1}{44}\right)$$ $$e\left(\frac{39}{44}\right)$$ $$e\left(\frac{1}{44}\right)$$ $$e\left(\frac{21}{44}\right)$$
$$\chi_{1840}(1189,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{3}{44}\right)$$ $$e\left(\frac{10}{11}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{23}{44}\right)$$ $$e\left(\frac{15}{44}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{9}{44}\right)$$ $$e\left(\frac{43}{44}\right)$$ $$e\left(\frac{9}{44}\right)$$ $$e\left(\frac{13}{44}\right)$$
$$\chi_{1840}(1269,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{7}{44}\right)$$ $$e\left(\frac{5}{11}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{39}{44}\right)$$ $$e\left(\frac{35}{44}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{21}{44}\right)$$ $$e\left(\frac{27}{44}\right)$$ $$e\left(\frac{21}{44}\right)$$ $$e\left(\frac{1}{44}\right)$$
$$\chi_{1840}(1389,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{44}\right)$$ $$e\left(\frac{7}{11}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{37}{44}\right)$$ $$e\left(\frac{5}{44}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{3}{44}\right)$$ $$e\left(\frac{29}{44}\right)$$ $$e\left(\frac{3}{44}\right)$$ $$e\left(\frac{19}{44}\right)$$
$$\chi_{1840}(1429,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{39}{44}\right)$$ $$e\left(\frac{9}{11}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{35}{44}\right)$$ $$e\left(\frac{19}{44}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{29}{44}\right)$$ $$e\left(\frac{31}{44}\right)$$ $$e\left(\frac{29}{44}\right)$$ $$e\left(\frac{37}{44}\right)$$
$$\chi_{1840}(1549,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{5}{44}\right)$$ $$e\left(\frac{2}{11}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{9}{44}\right)$$ $$e\left(\frac{25}{44}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{15}{44}\right)$$ $$e\left(\frac{13}{44}\right)$$ $$e\left(\frac{15}{44}\right)$$ $$e\left(\frac{7}{44}\right)$$
$$\chi_{1840}(1589,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{31}{44}\right)$$ $$e\left(\frac{8}{11}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{3}{44}\right)$$ $$e\left(\frac{23}{44}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{5}{44}\right)$$ $$e\left(\frac{19}{44}\right)$$ $$e\left(\frac{5}{44}\right)$$ $$e\left(\frac{17}{44}\right)$$
$$\chi_{1840}(1669,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{19}{44}\right)$$ $$e\left(\frac{1}{11}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{43}{44}\right)$$ $$e\left(\frac{7}{44}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{13}{44}\right)$$ $$e\left(\frac{23}{44}\right)$$ $$e\left(\frac{13}{44}\right)$$ $$e\left(\frac{9}{44}\right)$$
$$\chi_{1840}(1789,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{21}{44}\right)$$ $$e\left(\frac{4}{11}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{29}{44}\right)$$ $$e\left(\frac{17}{44}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{19}{44}\right)$$ $$e\left(\frac{37}{44}\right)$$ $$e\left(\frac{19}{44}\right)$$ $$e\left(\frac{3}{44}\right)$$
$$\chi_{1840}(1829,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{35}{44}\right)$$ $$e\left(\frac{3}{11}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{19}{44}\right)$$ $$e\left(\frac{43}{44}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{17}{44}\right)$$ $$e\left(\frac{3}{44}\right)$$ $$e\left(\frac{17}{44}\right)$$ $$e\left(\frac{5}{44}\right)$$