Properties

Label 1840.553
Modulus $1840$
Conductor $40$
Order $4$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1840, base_ring=CyclotomicField(4))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,2,3,0]))
 
pari: [g,chi] = znchar(Mod(553,1840))
 

Basic properties

Modulus: \(1840\)
Conductor: \(40\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{40}(13,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1840.z

\(\chi_{1840}(553,\cdot)\) \(\chi_{1840}(1657,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\sqrt{-1}) \)
Fixed field: 4.0.8000.2

Values on generators

\((1151,1381,737,1201)\) → \((1,-1,-i,1)\)

Values

\(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(27\)\(29\)
\(-1\)\(1\)\(-i\)\(-i\)\(-1\)\(-1\)\(-i\)\(-i\)\(1\)\(-1\)\(i\)\(1\)
value at e.g. 2