Properties

Label 1840.1289
Modulus $1840$
Conductor $40$
Order $2$
Real yes
Primitive no
Minimal no
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1840, base_ring=CyclotomicField(2))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,1,1,0]))
 
pari: [g,chi] = znchar(Mod(1289,1840))
 

Basic properties

Modulus: \(1840\)
Conductor: \(40\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{40}(29,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1840.j

\(\chi_{1840}(1289,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{10}) \)

Values on generators

\((1151,1381,737,1201)\) → \((1,-1,-1,1)\)

Values

\(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(27\)\(29\)
\(1\)\(1\)\(1\)\(-1\)\(1\)\(-1\)\(1\)\(-1\)\(-1\)\(-1\)\(1\)\(-1\)
value at e.g. 2