Properties

Label 183.d
Modulus $183$
Conductor $183$
Order $2$
Real yes
Primitive yes
Minimal yes
Parity odd

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(183, base_ring=CyclotomicField(2))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([1,1]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(182,183))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Kronecker symbol representation

sage: kronecker_character(-183)
 
pari: znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{-183}{\bullet}\right)\)

Basic properties

Modulus: \(183\)
Conductor: \(183\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{-183}) \)

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{183}(182,\cdot)\) \(-1\) \(1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(1\)