Properties

Label 1805.191
Modulus $1805$
Conductor $361$
Order $19$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1805, base_ring=CyclotomicField(38))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,32]))
 
pari: [g,chi] = znchar(Mod(191,1805))
 

Basic properties

Modulus: \(1805\)
Conductor: \(361\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(19\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{361}(191,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1805.q

\(\chi_{1805}(96,\cdot)\) \(\chi_{1805}(191,\cdot)\) \(\chi_{1805}(286,\cdot)\) \(\chi_{1805}(381,\cdot)\) \(\chi_{1805}(476,\cdot)\) \(\chi_{1805}(571,\cdot)\) \(\chi_{1805}(666,\cdot)\) \(\chi_{1805}(761,\cdot)\) \(\chi_{1805}(856,\cdot)\) \(\chi_{1805}(951,\cdot)\) \(\chi_{1805}(1046,\cdot)\) \(\chi_{1805}(1141,\cdot)\) \(\chi_{1805}(1236,\cdot)\) \(\chi_{1805}(1331,\cdot)\) \(\chi_{1805}(1426,\cdot)\) \(\chi_{1805}(1521,\cdot)\) \(\chi_{1805}(1616,\cdot)\) \(\chi_{1805}(1711,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{19})\)
Fixed field: 19.19.10842505080063916320800450434338728415281531281.1

Values on generators

\((362,1446)\) → \((1,e\left(\frac{16}{19}\right))\)

Values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 1805 }(191, a) \) \(1\)\(1\)\(e\left(\frac{16}{19}\right)\)\(e\left(\frac{1}{19}\right)\)\(e\left(\frac{13}{19}\right)\)\(e\left(\frac{17}{19}\right)\)\(e\left(\frac{6}{19}\right)\)\(e\left(\frac{10}{19}\right)\)\(e\left(\frac{2}{19}\right)\)\(e\left(\frac{17}{19}\right)\)\(e\left(\frac{14}{19}\right)\)\(e\left(\frac{1}{19}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1805 }(191,a) \;\) at \(\;a = \) e.g. 2