Properties

Label 1800.59
Modulus $1800$
Conductor $1800$
Order $30$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1800, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([15,15,25,21]))
 
Copy content pari:[g,chi] = znchar(Mod(59,1800))
 

Basic properties

Modulus: \(1800\)
Conductor: \(1800\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1800.cx

\(\chi_{1800}(59,\cdot)\) \(\chi_{1800}(419,\cdot)\) \(\chi_{1800}(659,\cdot)\) \(\chi_{1800}(779,\cdot)\) \(\chi_{1800}(1019,\cdot)\) \(\chi_{1800}(1139,\cdot)\) \(\chi_{1800}(1379,\cdot)\) \(\chi_{1800}(1739,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.30.46161136039856776541296875000000000000000000000000000000000000000000000.1

Values on generators

\((1351,901,1001,577)\) → \((-1,-1,e\left(\frac{5}{6}\right),e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1800 }(59, a) \) \(1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{29}{30}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1800 }(59,a) \;\) at \(\;a = \) e.g. 2