sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,6,2,9]))
pari:[g,chi] = znchar(Mod(443,1800))
\(\chi_{1800}(443,\cdot)\)
\(\chi_{1800}(707,\cdot)\)
\(\chi_{1800}(1307,\cdot)\)
\(\chi_{1800}(1643,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1351,901,1001,577)\) → \((-1,-1,e\left(\frac{1}{6}\right),-i)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 1800 }(443, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) |
sage:chi.jacobi_sum(n)