sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,15,5,18]))
pari:[g,chi] = znchar(Mod(371,1800))
| Modulus: | \(1800\) | |
| Conductor: | \(1800\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(30\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1800}(11,\cdot)\)
\(\chi_{1800}(131,\cdot)\)
\(\chi_{1800}(371,\cdot)\)
\(\chi_{1800}(491,\cdot)\)
\(\chi_{1800}(731,\cdot)\)
\(\chi_{1800}(1091,\cdot)\)
\(\chi_{1800}(1211,\cdot)\)
\(\chi_{1800}(1571,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1351,901,1001,577)\) → \((-1,-1,e\left(\frac{1}{6}\right),e\left(\frac{3}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 1800 }(371, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{30}\right)\) |
sage:chi.jacobi_sum(n)