sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,0,10,24]))
pari:[g,chi] = znchar(Mod(1111,1800))
\(\chi_{1800}(31,\cdot)\)
\(\chi_{1800}(391,\cdot)\)
\(\chi_{1800}(511,\cdot)\)
\(\chi_{1800}(871,\cdot)\)
\(\chi_{1800}(1111,\cdot)\)
\(\chi_{1800}(1231,\cdot)\)
\(\chi_{1800}(1471,\cdot)\)
\(\chi_{1800}(1591,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1351,901,1001,577)\) → \((-1,1,e\left(\frac{1}{3}\right),e\left(\frac{4}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 1800 }(1111, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{13}{15}\right)\) |
sage:chi.jacobi_sum(n)