from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(18, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([5]))
chi.galois_orbit()
[g,chi] = znchar(Mod(5,18))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(18\) | |
Conductor: | \(9\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(6\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 9.d | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\mathbb{Q}(\zeta_3)\) |
Fixed field: | \(\Q(\zeta_{9})\) |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) |
---|---|---|---|---|---|---|
\(\chi_{18}(5,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{18}(11,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |